COMP/ENGN6528 Computer Vision - 2023 S1
Computer Lab 3 (CLab-3)

Yifan Zhu
u7560434

15/05/2023

Task-1: 3D-2D Camera Calibration (17 marks)

Camera calibration involves finding the geometric relationship between 3D world
coordinates and their 2D projected positions in the image.

Four images, stereo2012a.jpg, stereo2012b. jpg, stereo2012c. jpg, and
stereo2012d.jpg, are given for this CLab-3. These images are different views of a
calibration target and some objects. For example, the diagram below is
stereo2012a.jpg with some text superimposed onto it:

(Do not directly use the above image for your camera calibration work
as it has been scaled for illustration. Use the original (unlabelled) image files provided.)

On the calibration target there are 3 mutually orthogonal faces. The points marked on
each face form a regular grid. They are all 7cm apart.

Write a Matlab function with the following specification

Function to perform camera calibration

Function C = calibrate(im, XYZ, uv)
Input: im: is the image of the calibration target.
XYZ: isa Nx3 array of XYZ coordinates of the calibration target

points.
uv: is a N x 2 array of the image coordinates of the calibration
target points.
Outputs: C: is the 3 x 4 camera calibration matrix.

The variable N should be an integer greater than or equal to 6.
This function should also plot the uv coordinates onto the image of the calibration
target. It also projects the XYZ coordinates back into image coordinates using the

http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012a.jpg
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012b.jpg
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012c.jpg
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012d.jpg

calibration matrix and plots these points too as a visual check on the accuracy of the
calibration process.

The mean squared error between the positions of the uv coordinates and the projected
XYZ coordinates is also reported.

Lines from the origin to the vanishing points (namely, world coordinate system) in the X,

Y and Z directions are overlaid on the image.

Generally, we ask you to implement a function:
MATLAB user:
function C = calibrate(im, XYZ, uv)

Python user:

def calibrate(im, XYZ, uv)
return C

For Task-1, you should include the following in your Lab-Report PDF file:

1. List calibrate function in your PDF file. [3 marks]

Following Figure 1.1 shows calibrate functions, as well as plot points and lines
functions.

line intersection(linel, line2):
yl, x2, y2 = 1linel[0] [0] linel[
110
Y X4 74 ine? line2 [
[

1111

(y2 - y1)
(vd - y3)

= vyl - k1 * 5

= o) & 2 @

(b2 - bl) /

drawlLines (im) :

(im.filename)
origin = np.load/(
x linel = np.load(
x line2 =

y linel = np.load()

y line2 = np.load()

y v = line intersection(y linel, y line2)
X = np.array((origin[0] y v[0]))

y = np.array((origin[l], y vI[1]))
plt.plot(x, vy =)

z linel = np.load()
z line2 = np.load/()
z:v = line intersection(z linel, z line2)
x = np.array((origin[0], z v[0]))
y = np.array((origin[l], z v[1]))
plt.plot(x, y =)
plt.xlim((im.size[0]))

plt.ylim((im.size[1]))

origin = np.load(

x linel = np.load/()

X line2 = np.load/()
x:v = line intersection(x linel, x line2)
X = np.array((origin[0] x v[0]))

y = np.array((origin[l], x v[1]))
plt.plot(x, y =)

y linel = np.load()

y line2 = np.load()

y v = line intersection(y linel, y line2)
X = np.array((origin[0] y vI[0]))

y = np.array((origin[1l], y v[1]))
plt.plot(x, y =)

z linel = np.load()

z line2 = np.load()

z v = line intersection(z linel, z line2)
X = np.array((origin[0] z v[0]))

y = np.array((originf[1] z v[1]))
plt.plot (x =)

plt.xlim((‘ ‘ [0]))
plt.ylim((im.size]|))

visualize projection (im, uv):
plt.close ()
uv_o = uv
uv_p = np.load(
i (uv_o.shape([0]) :
plt.plot (uv_of[i], uv_oli
=10)
plt.plot (uv_pli] uv_pli
= =10)
plt.imshow (im)
plt.title(
drawLines (im)
plt.show ()

calibrate (im, XYZ, uv) :

np.shape (uv) [0] <=
(

projection error = np.mean (np.square(uv - uv
np.save (uv projection)

(

visualize projection (im, uv)
C

Figure 1.1 Calibrate function and its following drawing functions

2. List the image you have chosen for your experiment, and display the
image in your PDF file. [0.5 mark]

I have chosen ‘stereco2012a.jpg’, and result image is shown in Figure 1.2,

stereo2012a.jpg

100

200

300

400

500

0 100 200 300 400 500 600 700

Figure 1.2 Original image ‘stereco2012a.jpg’. Blue circles are selected points

3. List the 3x4 camera calibration matrix P that you have calculated for the
selected image. Please visualise the projection of the XY Z coordinates
back onto image using the calibration matrix P and report the
reprojection error (The mean squared error between the positions of the
uv coordinates and the projected XYZ coordinates using the estimated
projection matrix)[2 marks]

Calibration matrix P is shown in Figure 1.3.

[[4.23901178e+00 -1.94334431e+00 -6.25973799e+00 3.21385434e+02]
[-3.90616926e-02 -7.32819630e+00 1.03266138e+00 3.34258365e+02]

[-4.21930743e-03 -3.20872927e-03 -6.25391645e-03 1.00000000e+00]]

Figure 1.3 Calibration matrix P

Visualisation of the projection of XYZ coordinate after using calibration matrix P as
well as lines from the original point to vanishing point in each direction is shown in
Figure 1.4.

Visualise the projection and original points

100

200

300

400

500

0 100 200 300 400 500 600 700

Figure 1.4 Visualisation of the projection and original points. In this image, the red Xs
are the originally chosen points, and the blue circles are the projection of the
calibration target. Green lines are connections between the origin of the world
coordinate and the vanishing point in XYZ directions

The MSE between original points on the image and projection from world coordinate
is shown in Figure 1.5.

The mean squared error is: 0.004858249002383643

Figure 1.5 The MSE between original points on the image and projection from the
world coordinate

4. Decompose the P matrix into K, R, t, such that P = K[R|t], by using the
following provided code (vgg_KR_from P.mOF vgg_KR_from P.py). List
the results, namely the K, R, t matrices, in your PDF file. [1.5 marks]

After decomposing matrix P using vgg_KR_from_P.py, we can get matrix K, R, t as
shown is Figure 1.6.

[[859.69705023 9.72577749 409.13350252]
. 865.6000953 256.22438647]
[© 0. 1. 11

R = [[0.84472378 -0.07909325 -0.52932599]

[0.14684026 -0.91681707 0.37132788]

[-0.51466463 -0.39139586 -0.76284311]]
[71.78532867 56.82896649 82.31111895]

Figure 1.6 Matrix K, R, t

5. Please answer the following questions:

- what is the focal length (in the unit of pixel) of the camera? [1 mark]

According to the definition of matrix K shown in Figure 1.6, the focal length in the x
direction is 859.70, while in the y direction is 865.60.

- What is the pitch angle of the camera with respect to the X-Z plane in
the world coordinate system? (Assuming the X-Z plane is the ground plane,
then the pitch angle is the angle between the camera’s optical axis and the
ground-plane.) Please provide the calculation process [2 marks]

Extract the elements R. Then calculate the pitch angle theta using the atan2() function
then transfer it into degrees, as code shown in Figure 1.7 and result in Figure 1.8.

theta = math.degrees (math.atan2 (R[] np.sqgrt (R

1*¥*2)))
((theta))

Figure 1.7 Code to calculate pitch angle

pitch angle of the camera: -30.975040845616828

Figure 1.8 Pitch angle of the camera

- What is the camera centre coordinate in the XYZ coordinate system (world
coordinate system)? Please provide the calculation process [1 mark]

To calculate the camera centre, we need to multiply R and t, as code shown in Figure
1.9 and the result shown in Figure 1.10.

camera centre)

Figure 1.9 Code to calculate camera centre

Camera centre: [-26.62093283 89.99573238 79.6861295]

Figure 1.10 Camera centre coordinate

6. Please resize your selected image using builtin function from matlab or
python to (H/3, W/3) where H, and W denote the original size of your
selected image. Using the interface function, (ginput in Matlab, and
matplotlib.pyplot.ginput in Python) t0 find the uv coordinates in the
resized image. [1 mark]

The code for resizing is shown in Figure 1.11. And result image is shown in Figure
1.12.

Figure 1.11 Code for resizing image into (H/3, W/3)

Resized stereo2012a.jpg

25
50
75
100
125
150

175

0 50 100 150 200 250

Figure 1.12 Result after resizing, with blue circles referring to uv coordinates

a. Please display your resized image in the report, list your calculated
3x4 camera calibration matrix P’ and the decomposed K’, R’, t’ in
your PDF file. [2 marks]

After resizing, we draw uv coordinates and also the projection of XYZ coordinates, as
well as lines linking the origin to the vanishing point in the image. Image is shown in
Figure 1.13.

Visualise the projection and original points

25

50

75

100

125

150

175

0 50 100 150 200 250

Figure 1.13 After resizing the image. In this image, the red Xs are the originally
chosen points, and the blue circles are the projection of the calibration target. Green
lines are connections between the origin of the world coordinate and the vanishing
point in XYZ directions

In Figure 1.14, here shows the calibration matrix P’, the intrinsic matrix K’, the
rotation matrix R’ and the translation vector t’.

The mean squared error is: 0.004858249002383643
[[1.41904905e+00 -6.39961860e-01 -2.05704285e+00 1.06816367e+02]
.92268281e-02 -2.44463554e+00 3.68672436e-01 1.11158935e+02]
.27744726e-03 -3.15049352e-03 -6.11957234e-03 1.00000000e+00]]
[[290.59044904 1.08745886 129.95793932]
292.89737886 85.47841905]

. 0. 1. 1]
[[0.83814179 -0.09446488 -0.53721014]
.13751505 -0.91648006 0.37570455]

).52783327 -0.38876816 -0.7551499]]
[71.9167494 56.95721487 83.8190207]

Figure 1.14 Matrix P’, K’, R” and t’

b. Please analyse the differences between 1) K and K’,2) Rand R’, 3) t
and t’. Please provide the reasoning when changes happened or there
are no changes. .[2 marks]

Following Figure 1.15 shows two images which are K, R and t matrices and
corresponding K’, R’ and t” matrices before or after changes happen.

[[859.69705023 9.72577749 409.13350252] K' = [[290.59044904 1.08745886 129.95793932]
0. 865.6000953 256.22438647] 9. 292.89737886 85.47841905]
0. 0. 1. 11 . 0. 1. 11

R = [[0.84472378 -0.07909325 -0.52932599] "= [[0.83814179 -0.09446488 -0.53721014]

[8.14684826 -0.91681707 ©.37132788] 9.13761500 0. 71048085 €.37/676468]

-0.52783327 -0.38876816 -0.7551499 1]
"= [71.9167494 56.95721487 83.8190207]

[-0.51466463 -0.39139586 -0.76284311]]
t = [71.78532867 56.82896649 82.31111895]

Figure 1.15 Matrices K, R, tand K’, R’ and t’

Firstly, we compare matrix K. As we can see in the Figure 1.15, the focal length for
both x and y directions are changed. After resizing the original image to a one-third
size, it seems that the focal length is also the one-third of original one. Besides, the
value of principal points are one-third of the original ones. Furthermore, the skew
parameter is one-ninth of the original one. Changes can be shown as follow.

Jao 5 pe| %Jg%
K = fyply,Kz ?y%y

The focal length, main point, and skew are a few of the intrinsic camera properties
represented by the camera intrinsic matrix K. Due to changes in image size and
resolution, inherent parameters may change when an image is resized. Resampling the
pixels when resizing an image might impact how crisp the image is and distort the
original pixel grid. As a result, while resizing the image, the focal length and principal
point estimations within the camera matrix K may change.

For matrix R and t, it seems unchanged after changing.

The rotation matrix describing the camera's orientation in the world coordinate system
is represented by the camera extrinsic matrix R. Because it represents the camera'’s
intrinsic orientation and is unaffected by image size, the rotation matrix R should not
change when the image is resized.

The camera extrinsic matrix t represents the translation vector that describes the
camera's position in the world coordinate system. As mentioned earlier, resizing an
image does not alter the camera'’s position or translation. Thus, t' should remain the
same.

c. Let us check the focal length (f and f*) (in pixel unit) and the principal
points extracted from K and K’, respectively. Please discuss their
relationship between (f and f°) and its connection to the image size of
the original image and the one after resizing.[2 marks]

As we discuss in the last section, we define the following, where Sresized refers
to the size of the resized image and Soriginal refers to the size of the original image.

Sresized
T = ————

Soriginal

In this case, r equals to 1/3. So the relationship between f, f°, principle point
and size of original image are shown as below.

ff=fxr
pészxr
Py =Dy XT

Task-2: Two-View DLT based homography estimation. (10 marks)

A transformation from the projective space P3 to itself is called homography. A
homography is represented by a 3x3 matrix with 8 degree of freedom (scale, as usual,
does not matter)

.’L‘C’w h11 hlg h13 LER
yCw| = |har hos hoz| |yF
h31 hsa hass 1

The goal of this task is to the DLT algorithm to estimate a 3x3 homography matrix.

e
"
o

i - =

D Dorestd Bren Hl

(a) Left (b) Right

Pick any 6 corresponding coplanar points in the images left.jpg and
right.jpg and get their image coordinates.

In doing this step you may find it useful to check the Mat1lab function ginput.
Calculate the 3x3 homography matrix between the two images, from the above 6 pairs

of corresponding points, using DLT algorithm. You are required to implement your
function in the following syntax.

Function to calculate homography matrix

H = homography (u2Trans, v2Trans, uBase, vBase)

Usage: Computes the homography H applying the Direct Linear
Transformation

Inputs: u2Trans, are vectors with coordinates u and v of the transformed
v2Trans: image point (p')

uBase, are vectors with coordinates u and v of the original base
vBase: image point p
Output: H: is a 3x3 Homography matrix

In doing this lab task, you should include the following in your lab report:

1. List your source code for homography estimation function and display
the two images and the location of six pairs of selected points (namely,
plotted those points on images). Explain the steps about what you have
done for the homography and what is shown in the images. [5 marks]

Below Figure 2.1 is homography estimation function homography().

homography (u2Trans, v2Z2Trans, uBase
uBase.shape != vBase.shape .S != v2Trans.shape
uBase.shape != u2Trans.shape:
(

uBase.shape[0]

)

points

b

A = np.zeros ((

* 1] = [uBasel[i], Vv i =
i]*uBase[1i] -1*u2Trans
(2 * 1+ 1] = [
[i] *uBase[1i] -1*v2Trans

i
A
S

[
[

*u2Tran

A
*v2Trans

Figure 2.1 Homography function

And following Figure 2.2 shows the points we choose in two corresponding images.

Left.jpg Right.jpg

O !hnﬂn-.wv e

0 TS
H"g

"
50 | 50

(@) (b)

Figure 2.2 Chosen points in two images (a) Chosen points in left.jpg (b) Chosen
points in right.jpg

In order to calculate homography matrix, we follow the algorithm below.
(1) Find n >= 6 2D-to-3D point correspondences {xi <-> Xi}

(2) For each correspondence point {xi <-> Xi}, compute Ai, where A is shown as
below

X Y Z
A‘(oo

(3) Assemble n 2*12 matrices Ai into a single 2n*12 matrix A

0 —xX —2Y —zZ —a:)
1

0 0 O
X Y Z —yX —yY —yzZ -—y

S =

(4) Compute the SVD of A. The solution for p is the last column of V

2. List the 3x3 camera homography matrix H that you have calculated. [2
mark]

Homography matrix is shown in Figure 2.3.

H= [[-1.47021880e-02 7.66349670e-04 9.98864829e-01]
[-2.73001265e-03 -5.75446618e-03 4.46729727e-02]

[-2.0411735%9e-05 3.52550743e-06 -4.00874244e-03]]

Figure 2.3 Homography matrix

3. Warp the left image according to the calculated homography. Study the
factors that affect the rectified results, e.g., the distance between the
corresponding points, e.g the selected points and the warped ones. [3
mark] (Note: you can use builtin image warping functions in matlab and
python.)

According to the points chosen in Figure 2.2 and applying warping to the left image,
the result is shown in Figure 2.4, as well as the original right image for reference.

Left image after wrapping Right.jpg

-
150 4
5
: i Fr—p— -

50
100 100

150

200 ¢ 200

250 250 1
300 300

350

(@) (b)

Figure 2.4 Warped image and original right image (a) Warped image (b) original right
image.

The distance between wrapping points and original points is shown in Figure 2.5.

Distance between wrapping points and original points:
[82.32612597 117.69776549 231.20748808 295.00821747 408.49616025

464.09324885]

Figure 2.5 Distance between wrapping points and original points for first group of
points

In order to consider the factors that affect the result, we consider choosing points as
below in Figure 2.6.

Right.jpg

(@) (b)

Figure 2.6 Chosen points in two images (2" group) (a) Chosen points in left.jpg (b)
Chosen points in right.jpg

And we warp the left image we can get the following results in Figure 2.7 and the
distance between wrapping points and original points in Figure 2.8.

Left image after wrapping Right.jpg

100

150

200

250 4

300

350

(@) (b)

Figure 2.7 Warped image and original right image (2" group) (a) Warped image (b)
original right image.

Distance between wrapping points and original points:
[373.75730579 401.78990653 392.19948925 417.90514694 418.14970409

444.29019093]

Figure 2.8 Distance between wrapping points and original points for first group of
points

Basically, we can get our first factor. The distance between the corresponding points
can affect the warping. Large distances may introduce more distortion or inaccuracies
in the rectified image.

Then we consider choosing the following points as our 3" group. All corresponding
chosen points are shown in Figure 2.9.

Right.jpg

0 100 200 300 400

(a) (b)

Figure 2.9 Chosen points in two images (3" group) (a) Chosen points in left.jpg (b)
Chosen points in right.jpg

And we warp the left image we can get the following results in Figure 2.10 and the
distance between wrapping points and original points in Figure 2.11.

Left image after wrapping Right.jpg

(@) (b)

Figure 2.10 Warped image and original right image (a) Warped image (b) original
right image.

Distance between wrapping points and original points:
[157.26249386 179.45927197 211.36961288 245.08757891 292.00197418

335.46473468]

Figure 2.8 Distance between wrapping points and original points for first group of
points

Now we can get the second factor is that when choosing corresponding points in a
horizon or vertical line, we can’t get a good warping result. Ideally, selecting points
evenly distributed on the diagonal can get a better result.

