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Task-1:   3D-2D Camera Calibration (17 marks) 

 

 

Camera calibration involves finding the geometric relationship between 3D world 

coordinates and their 2D projected positions in the image.  

Four images, stereo2012a.jpg, stereo2012b.jpg, stereo2012c.jpg, and 

stereo2012d.jpg, are given for this CLab-3.   These images are different views of a 

calibration target and some objects.  For example, the diagram below is 

stereo2012a.jpg with some text superimposed onto it:  

  
(Do not directly use the above image for your camera calibration work  

as it has been scaled for illustration.  Use the original (unlabelled) image files provided.)  

 

On the calibration target there are 3 mutually orthogonal faces. The points marked on 

each face form a regular grid. They are all 7cm apart.  

Write a Matlab function with the following specification  

Function to perform camera calibration 

Function C = calibrate(im, XYZ, uv) 

Input: im: is the image of the calibration target. 

 XYZ: is a Nx3 array of XYZ coordinates of the calibration target 

points. 

 uv: is a N x 2 array of the image coordinates of the calibration 

target points.  

Outputs: C: is the 3 x 4 camera calibration matrix. 

 

The variable N should be an integer greater than or equal to 6. 

This function should also plot the uv coordinates onto the image of the calibration 

target.  It also projects the XYZ coordinates back into image coordinates using the 

http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012a.jpg
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012b.jpg
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012c.jpg
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Images/stereo2012d.jpg


calibration matrix and plots these points too as a visual check on the accuracy of the 

calibration process.   

The mean squared error between the positions of the uv coordinates and the projected 

XYZ coordinates is also reported. 

Lines from the origin to the vanishing points (namely, world coordinate system) in the X, 

Y and Z directions are overlaid on the image. 

 

 

 

Generally, we ask you to implement a function: 

MATLAB user: 

 function C = calibrate(im, XYZ, uv) 

Python user: 

        def calibrate(im, XYZ, uv) 

            return C 

 

For Task-1, you should include the following in your Lab-Report PDF file:  

1. List calibrate function in your PDF file. [3 marks] 

Following Figure 1.1 shows calibrate functions, as well as plot points and lines 

functions. 

# calculate line intersection 

def line_intersection(line1, line2): 

    x1, y1, x2, y2 = line1[0][0], line1[0][1], line1[1][0], 

line1[1][1] 

    x3, y3, x4, y4 = line2[0][0], line2[0][1], line2[1][0], 

line2[1][1] 

    # Calculate the slope of line1 

    k1 = (y2 - y1) / (x2 - x1) 

    # Calculate the slope of line2 

    k2 = (y4 - y3) / (x4 - x3) 

    # Calculate the intercepts 

    b1 = y1 - k1 * x1 

    b2 = y3 - k2 * x3 

    # Calculate the x-coordinate of the intersection point 

    x = (b2 - b1) / (k1 - k2) 

    # Calculate the y-coordinate of the intersection point 

    y = k1 * x + b1 

    return x, y 

 

# draw lines from original to vanishing points 

def drawLines(im): 

    try: 

        print(im.filename) 

        origin = np.load('origin.npy') 

        x_line1 = np.load('x_line1.npy') 

        x_line2 = np.load('x_line2.npy') 

        x_v = line_intersection(x_line1, x_line2) 

        x = np.array((origin[0], x_v[0])) 

        y = np.array((origin[1], x_v[1])) 

        plt.plot(x, y, color='g') 

 



        y_line1 = np.load('y_line1.npy') 

        y_line2 = np.load('y_line2.npy') 

        y_v = line_intersection(y_line1, y_line2) 

        x = np.array((origin[0], y_v[0])) 

        y = np.array((origin[1], y_v[1])) 

        plt.plot(x, y, color='g') 

 

        z_line1 = np.load('z_line1.npy') 

        z_line2 = np.load('z_line2.npy') 

        z_v = line_intersection(z_line1, z_line2) 

        x = np.array((origin[0], z_v[0])) 

        y = np.array((origin[1], z_v[1])) 

        plt.plot(x, y, color='g') 

        plt.xlim((0, im.size[0])) 

        plt.ylim((im.size[1], 0)) 

    except: 

        origin = np.load('origin_resize.npy') 

        x_line1 = np.load('x_line1_resize.npy') 

        x_line2 = np.load('x_line2_resize.npy') 

        x_v = line_intersection(x_line1, x_line2) 

        x = np.array((origin[0], x_v[0])) 

        y = np.array((origin[1], x_v[1])) 

        plt.plot(x, y, color='g') 

 

        y_line1 = np.load('y_line1_resize.npy') 

        y_line2 = np.load('y_line2_resize.npy') 

        y_v = line_intersection(y_line1, y_line2) 

        x = np.array((origin[0], y_v[0])) 

        y = np.array((origin[1], y_v[1])) 

        plt.plot(x, y, color='g') 

 

        z_line1 = np.load('z_line1_resize.npy') 

        z_line2 = np.load('z_line2_resize.npy') 

        z_v = line_intersection(z_line1, z_line2) 

        x = np.array((origin[0], z_v[0])) 

        y = np.array((origin[1], z_v[1])) 

        plt.plot(x, y, color='g') 

        plt.xlim((0, im.size[0])) 

        plt.ylim((im.size[1], 0)) 

 

# Draw points in the picture 

def visualize_projection(im, uv): 

    plt.close() 

    uv_o = uv 

    uv_p = np.load('uv_projection.npy') 

    for i in range(uv_o.shape[0]): 

        plt.plot(uv_o[i, 0], uv_o[i, 1], marker="x", color="r", 

markersize=10) 

        plt.plot(uv_p[i, 0], uv_p[i, 1], marker="o", mfc="none", 

color="b", markersize=10) 

    plt.imshow(im) 

    plt.title("Visualise the projection and original points") 

    drawLines(im) 

    plt.show() 

 

def calibrate(im, XYZ, uv): 

    # If uv size is less than 6, then raise error 

    if np.shape(uv)[0] <= 5: 

        raise Exception("uv length should be greater then 5") 

 

    "Calculate calibration matrix P" 



    # size of XYZ 

    len_XYZ = np.shape(XYZ)[0] 

 

    # initiate matrix A, size 2n*12 

    A = np.zeros((2*len_XYZ, 12)) 

 

    # Assemble 2n*12 matrix A 

    for i in range(len_XYZ): 

        A[2*i] = [XYZ[i][0], XYZ[i][1], XYZ[i][2], 1, 0, 0, 0, 0, -

1*uv[i][0]*XYZ[i][0], -1*uv[i][0]*XYZ[i][1], -1*uv[i][0]*XYZ[i][2], -

1*uv[i][0]] 

        A[2*i+1] = [0, 0, 0, 0, XYZ[i][0], XYZ[i][1], XYZ[i][2], 1, -

1*uv[i][1]*XYZ[i][0], -1*uv[i][1]*XYZ[i][1], -1*uv[i][1]*XYZ[i][2], -

1*uv[i][1]] 

 

    # Compute the SVD of A 

    U, S, V = np.linalg.svd(A) 

    # The solution is the last column of V 

    C = V.T[:, -1] 

    # Reshape C to 3*4 

    C = C.reshape(3, 4) 

    C = C / C[2, 3] 

 

    "the projection of the XYZ coordinates back onto image" 

    uv_projection_H = np.zeros((np.shape(uv)[0], np.shape(uv)[1]+1)) 

    uv_projection = np.zeros((np.shape(uv)[0], np.shape(uv)[1])) 

    # transfer XYZ into homogeneous vector 

    XYZ_H = np.zeros((np.shape(XYZ)[0], np.shape(XYZ)[1] +1)) 

 

    for i in range(len_XYZ): 

        XYZ_H[i] = np.append(XYZ[i], 1) 

        uv_projection_H[i] = np.transpose(C @ np.transpose(XYZ_H[i])) 

        # Dehomogeneous for uv 

        uv_projection[i] = uv_projection_H[i][:-1] / 

uv_projection_H[i][-1] 

 

    "Calculate reprojection error" 

    projection_error = np.mean(np.square(uv - uv_projection)) 

    np.save('uv_projection',uv_projection) 

    print("The mean squared error is: "+str(projection_error)) 

 

    # Draw points in the picture 

    visualize_projection(im, uv) 

    return C 

Figure 1.1 Calibrate function and its following drawing functions 

 

2. List the image you have chosen for your experiment, and display the 

image in your PDF file.   [0.5 mark] 

I have chosen ‘stereo2012a.jpg’, and result image is shown in Figure 1.2. 



 

Figure 1.2 Original image ‘stereo2012a.jpg’. Blue circles are selected points 

3. List the 3x4 camera calibration matrix P that you have calculated for the 

selected image. Please visualise the projection of the XYZ coordinates 

back onto image using the calibration matrix P and report the 

reprojection error (The mean squared error between the positions of the 

uv coordinates and the projected XYZ coordinates using the estimated 

projection matrix)[2 marks] 

Calibration matrix P is shown in Figure 1.3.  

 

Figure 1.3 Calibration matrix P 

Visualisation of the projection of XYZ coordinate after using calibration matrix P as 

well as lines from the original point to vanishing point in each direction is shown in 

Figure 1.4. 



 

Figure 1.4 Visualisation of the projection and original points. In this image, the red Xs 

are the originally chosen points, and the blue circles are the projection of the 

calibration target. Green lines are connections between the origin of the world 

coordinate and the vanishing point in XYZ directions 

The MSE between original points on the image and projection from world coordinate 

is shown in Figure 1.5.  

 

Figure 1.5 The MSE between original points on the image and projection from the 

world coordinate  

4. Decompose the P matrix into K, R, t, such that P = K[R|t], by using the 

following provided code (vgg_KR_from_P.m or vgg_KR_from_P.py). List 

the results, namely the K, R, t matrices, in your PDF file. [1.5 marks] 

After decomposing matrix P using vgg_KR_from_P.py, we can get matrix K, R, t as 

shown is Figure 1.6.  



 

Figure 1.6 Matrix K, R, t 

5. Please answer the following questions: 

                 - what is the focal length (in the unit of pixel) of the camera? [1 mark] 

According to the definition of matrix K shown in Figure 1.6, the focal length in the x 

direction is 859.70, while in the y direction is 865.60. 

                 - What is the pitch angle of the camera with respect to the X-Z plane in 

the world coordinate system?   (Assuming the X-Z plane is the ground plane, 

then the pitch angle is the angle between the camera's optical axis and the 

ground-plane.) Please provide the calculation process [2 marks] 

Extract the elements R. Then calculate the pitch angle theta using the atan2() function 

then transfer it into degrees, as code shown in Figure 1.7 and result in Figure 1.8.  

# Calculate pitch angle 

theta = math.degrees(math.atan2(R[2, 0], np.sqrt(R[0, 0]**2 + R[1, 

0]**2))) 

print('pitch angle of the camera: ' + str(theta)) 

Figure 1.7 Code to calculate pitch angle 

 

Figure 1.8 Pitch angle of the camera 

    - What is the camera centre coordinate in the XYZ coordinate system (world 

coordinate system)? Please provide the calculation process [1 mark]  

To calculate the camera centre, we need to multiply R and t, as code shown in Figure 

1.9 and the result shown in Figure 1.10.  

# Calculate camera centre 

camera_centre = -R.T @ t 

print('Camera centre: ', camera_centre) 

Figure 1.9 Code to calculate camera centre 



 

Figure 1.10 Camera centre coordinate 

6. Please resize your selected image using builtin function from matlab or 

python to (H/3, W/3) where H, and W denote the original size of your 

selected image. Using the interface function, (ginput in Matlab, and 

matplotlib.pyplot.ginput in Python) to find the uv coordinates in the 

resized image. [1 mark] 

The code for resizing is shown in Figure 1.11. And result image is shown in Figure 

1.12.  

# resize image to (H/3, W/3) 

I_resize = I.resize((int(I.size[0]/3), int(I.size[1]/3))) 

# get point actions. Already get suitable points and save as *.npy 

# plt.imshow(I_resize) 

# uv_p = plt.ginput(6, timeout=30000) # Graphical user interface to 

get 6 points 

# uv_p = np.array(uv_p) 

# np.save('uv_p', uv_p) 

plt.imshow(I_resize) 

plt.title('Resized stereo2012a.jpg') 

uv_p = np.load('uv_p.npy') 

for i in range(uv_p.shape[0]): 

    plt.plot(uv_p[i, 0], uv_p[i, 1], marker="o", mfc="none", 

color="b", markersize=10) 

plt.show() 

Figure 1.11 Code for resizing image into (H/3, W/3) 

 

Figure 1.12 Result after resizing, with blue circles referring to uv coordinates 



a. Please display your resized image in the report, list your calculated 

3x4 camera calibration matrix P’ and the decomposed K’, R’, t’ in 

your PDF file. [2 marks] 

After resizing, we draw uv coordinates and also the projection of XYZ coordinates, as 

well as lines linking the origin to the vanishing point in the image. Image is shown in 

Figure 1.13. 

 

Figure 1.13 After resizing the image. In this image, the red Xs are the originally 

chosen points, and the blue circles are the projection of the calibration target. Green 

lines are connections between the origin of the world coordinate and the vanishing 

point in XYZ directions 

In Figure 1.14, here shows the calibration matrix P’, the intrinsic matrix K’, the 

rotation matrix R’ and the translation vector t’. 

 

Figure 1.14 Matrix P’, K’, R’ and t’ 



b. Please analyse the differences between 1) K and K’, 2) R and R’, 3) t 

and t’. Please provide the reasoning when changes happened or there 

are no changes. .[2 marks] 

Following Figure 1.15 shows two images which are K, R and t matrices and 

corresponding K’, R’ and t’ matrices before or after changes happen.  

 

Figure 1.15 Matrices K, R, t and K’, R’ and t’ 

Firstly, we compare matrix K. As we can see in the Figure 1.15, the focal length for 

both x and y directions are changed. After resizing the original image to a one-third 

size, it seems that the focal length is also the one-third of original one. Besides, the 

value of principal points are one-third of the original ones. Furthermore, the skew 

parameter is one-ninth of the original one.  Changes can be shown as follow.  

 

The focal length, main point, and skew are a few of the intrinsic camera properties 

represented by the camera intrinsic matrix K. Due to changes in image size and 

resolution, inherent parameters may change when an image is resized. Resampling the 

pixels when resizing an image might impact how crisp the image is and distort the 

original pixel grid. As a result, while resizing the image, the focal length and principal 

point estimations within the camera matrix K may change. 

For matrix R and t, it seems unchanged after changing.  

The rotation matrix describing the camera's orientation in the world coordinate system 

is represented by the camera extrinsic matrix R. Because it represents the camera's 

intrinsic orientation and is unaffected by image size, the rotation matrix R should not 

change when the image is resized. 

The camera extrinsic matrix t represents the translation vector that describes the 

camera's position in the world coordinate system. As mentioned earlier, resizing an 

image does not alter the camera's position or translation. Thus, t' should remain the 

same. 

 



c. Let us check the focal length (f and f’) (in pixel unit) and the principal 

points extracted from K and K’, respectively. Please discuss their 

relationship between (f and f’) and its connection to the image size of 

the original image and the one after resizing.[2 marks] 

As we discuss in the last section, we define the following, where sresized refers 

to the size of the resized image and soriginal refers to the size of the original image.  

 

In this case, r equals to 1/3. So the relationship between f, f’, principle point 

and size of original image are shown as below. 

 

 

Task-2:  Two-View DLT based homography estimation. (10 marks) 

A transformation from the projective space P3 to itself is called homography. A 

homography is represented by a 3x3 matrix with 8 degree of freedom (scale, as usual, 

does not matter)  

  

The goal of this task is to the DLT algorithm to estimate a 3x3 homography matrix.  

 

 



 

Pick any 6 corresponding coplanar points in the images left.jpg and 

right.jpg and get their image coordinates.   

 

In doing this step you may find it useful to check the Matlab function ginput. 

 

Calculate the 3x3 homography matrix between the two images, from the above 6 pairs 

of corresponding points, using DLT algorithm. You are required to implement your 

function in the following syntax.    

 

Function to calculate homography matrix 

H = homography (u2Trans, v2Trans, uBase, vBase) 

  

Usage: Computes the homography H applying the Direct Linear 

Transformation 

Inputs: u2Trans, 

v2Trans: 

are vectors with coordinates u and v of the transformed 

image point (p') 

 uBase, 

vBase: 

are vectors with coordinates u and v of the original base 

image point p   

Output: H: is a 3x3 Homography matrix   

 

In doing this lab task, you should include the following in your lab report:  

1. List your source code for homography estimation function and display 

the two images and the location of six pairs of selected points (namely, 

plotted those points on images). Explain the steps about what you have 

done for the homography and what is shown in the images. [5 marks] 

Below Figure 2.1 is homography estimation function homography(). 

def homography(u2Trans, v2Trans, uBase, vBase): 

    if uBase.shape != vBase.shape or u2Trans.shape != v2Trans.shape 

or uBase.shape != u2Trans.shape: 

        raise Exception('Points are inconsistent') 

    if uBase.shape[0] < 4: 

        raise Exception('Should give greater than or equal to 4 

points') 

 

    "Calculate the matrix H" 

    points = uBase.shape[0] 

    # initiate matrix A, size 2n*12 

    A = np.zeros((2 * points, 9)) 

 

    # Assemble 2n*12 matrix A 

    for i in range(points): 

        A[2 * i] = [uBase[i], vBase[i], 1, 0, 0, 0, -

1*u2Trans[i]*uBase[i], -1*u2Trans[i]*vBase[i], -1*u2Trans[i]] 

        A[2 * i + 1] = [0, 0, 0, uBase[i], vBase[i], 1, -

1*v2Trans[i]*uBase[i], -1*v2Trans[i]*vBase[i], -1*v2Trans[i]] 



    # Compute the SVD of A 

    U, S, V = np.linalg.svd(A) 

    # The solution is the last column of V 

    H = V.T[:, -1] 

    # reshape it into 3x3 matrix 

    H = H.reshape(3, 3) 

    return H 

Figure 2.1 Homography function 

And following Figure 2.2 shows the points we choose in two corresponding images.  

 

(a)                                                                          (b) 

Figure 2.2 Chosen points in two images (a) Chosen points in left.jpg (b) Chosen 

points in right.jpg 

In order to calculate homography matrix, we follow the algorithm below.  

(1) Find n >= 6 2D-to-3D point correspondences {xi <-> Xi} 

(2) For each correspondence point {xi <-> Xi}, compute Ai, where A is shown as 

below 

 

(3) Assemble n 2*12 matrices Ai into a single 2n*12 matrix A 

(4) Compute the SVD of A. The solution for p is the last column of V 

2. List the 3x3 camera homography matrix H that you have calculated. [2 

mark] 

Homography matrix is shown in Figure 2.3.  



 

Figure 2.3 Homography matrix 

3. Warp the left image according to the calculated homography. Study the 

factors that affect the rectified results, e.g., the distance between the 

corresponding points, e.g the selected points and the warped ones. [3 

mark] (Note: you can use builtin image warping functions in matlab and 

python.) 

According to the points chosen in Figure 2.2 and applying warping to the left image, 

the result is shown in Figure 2.4, as well as the original right image for reference.  

 

(a)                                                                    (b) 

Figure 2.4 Warped image and original right image (a) Warped image (b) original right 

image.  

The distance between wrapping points and original points is shown in Figure 2.5.  

 

Figure 2.5 Distance between wrapping points and original points for first group of 

points 

In order to consider the factors that affect the result, we consider choosing points as 

below in Figure 2.6.  



 

(a)                                                                  (b) 

Figure 2.6 Chosen points in two images (2nd group) (a) Chosen points in left.jpg (b) 

Chosen points in right.jpg 

And we warp the left image we can get the following results in Figure 2.7 and the 

distance between wrapping points and original points in Figure 2.8.  

 

(a)                                                                  (b) 

Figure 2.7 Warped image and original right image (2nd group) (a) Warped image (b) 

original right image. 

 

Figure 2.8 Distance between wrapping points and original points for first group of 

points 

Basically, we can get our first factor. The distance between the corresponding points 

can affect the warping. Large distances may introduce more distortion or inaccuracies 

in the rectified image. 



Then we consider choosing the following points as our 3rd group. All corresponding 

chosen points are shown in Figure 2.9.  

 

(a)                                                                    (b) 

Figure 2.9 Chosen points in two images (3rd group) (a) Chosen points in left.jpg (b) 

Chosen points in right.jpg 

And we warp the left image we can get the following results in Figure 2.10 and the 

distance between wrapping points and original points in Figure 2.11. 

 

(a)                                                                  (b) 

Figure 2.10 Warped image and original right image (a) Warped image (b) original 

right image.  

 

Figure 2.8 Distance between wrapping points and original points for first group of 

points 



Now we can get the second factor is that when choosing corresponding points in a 

horizon or vertical line, we can’t get a good warping result. Ideally, selecting points 

evenly distributed on the diagonal can get a better result.  

   ======================  End of CLab-3 ==================== 

  

 


