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COMP-ENGN-6528-Computer Vision Assignment 

Q1. The following is a separable filter. What does it mean to be a separable 

filter?(0.5 mark) Write down the separate components of the following filter. (1 

marks)  

In image processing, a separable filter can be expressed as the result of two more 

simple filters. Usually, a 2-dimensional convolution operation is separated into two 

1-dimensional filters. 

For the given filter, it can be separated as shown in Formula 1. 

 

 

 

In order to calculate the value using bilateral filtering, we use the method shown in 

Formula 2.  

 



 

 

As a given result  , now we need to calculate . The 

method of calculating  is shown in Formula 3. 

 

 

 

Where the range kernel r represents the absolute value of the difference between 

the grey-scale value f(k, l) of a point (k, l) in the neighbourhood and the grey-scale 

value f(i, j) of the centre point (i, j). 

 

The result of the range filter is shown in Formula 4.  

 

 

 

Then we calculate  to get a new matrix called 

weight Wp in Formula 5.  

 

 

 



Multiply the Wp of each point by the pixel value I(k, l) of the point as shown in 

Formula 6 and sum it as a molecule.  

 

Add the Wp of each point as the denominator and divide the two to get the pixel 

value of the desired output image's centre point (i, j) as shown in Formula 7. 

 

Now we can verify our outcome using code below provided by tutorial in Figure 

2.1 and result shown in Figure 2.2.  

import numpy as np 

import cv2 

 

I = np.array([[150, 100, 120, 30, 53], 

              [150, 112, 127, 40, 35], 

              [132, 125, 112, 43, 20], 

              [133, 130, 100, 30, 10], 

              [140, 130, 120, 20, 10]]) 

 

domain_filter = cv2.getGaussianKernel(5, 2) 

domain_filter = np.multiply(domain_filter.T, domain_filter) 

range_filter = np.exp(-0.5 * (I-112) ** 2 / 50 ** 2) 

weight = range_filter * domain_filter 

weight = weight / weight.sum() 

filter_value = (I * weight).sum().astype('uint8') 

 

print(range_filter) 

print(filter_value) 

Figure 2.1 Bilateral filtering code 

 

Figure 2.2 Output value for desired pixel 



Q3. Contour Detection [10 marks+5 marks(extra)] 
Acknowledgement: Lab material with code are adapted from the one by 

Professor Saurabh Gupta from UIUC, copyright by UIUC. 
In this problem we will build a basic contour detector. We will work with some 

images from the BSDS dataset (see [1]), and benchmark the performance of our 

contour detector against human annotations. You can review the basic concepts 

from lecture on edge detection (Week 3). We will generate a per-pixel boundary 

score. We will start from a very simple edge detector that simply uses the 

gradient magnitude of each pixel as the boundary score. We will add non-

maximum suppression, image smoothing, and optionally additional bells and 

whistles. We have provided some starter code, images from the BSDS dataset 

and the evaluation code. Note that we are using a faster approximate version of 

the evaluation code, so metrics here won’t be directly comparable to ones 

reported in papers.   

Preliminaries. Download the starter code, images and evaluation code from 

wattle (Assignment.zip)(see contour–data, contour demo.py/contour demo.m). 

The code has implemented a contour detector that uses the magnitude of the 

local image gradient as the boundary score. This gives us overall max F-score, 

average max F-score and AP (average precision) of 0.51, 0.56, 0.41 respectively. 

Reproduce these results by running contour demo.py/contour demo.m. Confirm 

your setup by matching these results. Note that the matlab version may be with 

0.01 difference from the python code due to the difference in inbuilt functions.   

When you run contour demo.py/contour demo.m, it saves the output contours 

in the folder outputdemo, prints out the 3 metrics, and produces a precision–

recall plots at contour–output/demo pr.pdf. Overall max F–score is the most 

important metric, but we will look at all three.   

• Warm-up. As you visualize the produced edges, you will notice artifacts at 

image boundaries. Modify how the convolution is being done to minimize 

these artifacts. (1 mark)   

Using padding before convolution might be one method to reduce the artefacts at 

image boundaries. By extending the image in all directions and enclosing it in a 

border of zeros, the padding will lessen the effect of the convolution at the image's 



edges. In this way, we can add boundary = "symm" into the function 

compute_edges_dxdy(I). As shown in Figure 3.1.  

def compute_edges_dxdy(I): 

    """Returns the norm of dx and dy as the edge response function.""" 

    I = I.astype(np.float32) / 255. 

     

# adding the boundary argument with the value 'symm'. This will make the 

convolution use 'symmetric' padding 

    dx = signal.convolve2d(I, np.array([[-1, 0, 1]]), mode='same', 

boundary="symm") 

    dy = signal.convolve2d(I, np.array([[-1, 0, 1]]).T, mode='same', 

boundary="symm") 

 

    # dx = signal.convolve2d(I, np.array([[-1, 0, 1]]), mode='same') 

    # dy = signal.convolve2d(I, np.array([[-1, 0, 1]]).T, mode='same') 

 

    mag = np.sqrt(dx ** 2 + dy ** 2)  

    mag = mag / np.max(mag) 

    mag = mag * 255. 

    mag = np.clip(mag, 0, 255) 

    mag = mag.astype(np.uint8) 

    return mag 

Figure 3.1 Add padding before convolution. Commended code is the original code 

Figure 3.2 shows the difference before and after padding.  

  

(a) Before  3096.png                                  (b) After 3096.png 



 

(b) Before 42049.png                                   (d) After 42049.png 

 

(e) Before 21077.png                                     (f) After 21077.png 

Figure 3.2 Difference before and after padding. For the left column, it refers to the 

original code. For right column, it refers to after apply padding to the image. In 

order to see the artifact clearly, we add a picture border for all images 

Below Table 3.1 shows the Contour quality performance metrics before and after 

the modification. 

Table 3.1 Metrics before and after the modification 

 before after 

f1 (overall max F-score) 0.514303 0.542282 

best_f1 (average max F-score) 0.563120 0.587146 

area_pr (AP) 0.409013 0.509025 

 

Below Table 3.2 shows the impact of modification on run-time. 



Table 3.2 Run-time before and after the modification 

 before after 

run-time(s) 153.8494 159.6061 

It seems like more running time after padding because of enlarging the image, i.e. 

more pixels need to be calculated.  

 

• Smoothing. Next, notice that we are using [−1, 0, 1] filters for computing 

the gradients, and they are susceptible to noise. Use derivative of 

Gaussian filters to obtain more robust estimates of the gradient. 

Experiment with different sigma for this Gaussian filtering and pick the 

one that works the best. (3 marks)   

We can get more accurate estimations of the gradient and lessen the impact of 

noise by using derivatives of Gaussian filters. The derivative process improves the 

image's edges while the Gaussian filter acts as a low-pass filter to reduce high-

frequency noise. 

To use derivative of Gaussian filters, we can modify the compute_edges_dxdy(I) 

function to apply a Gaussian filter before computing the gradients. Code is shown 

in Figure 3.2.  

def compute_edges_dxdy(I): 

    """Returns the norm of dx and dy as the edge response function.""" 

    I = I.astype(np.float32) / 255. 

    # generate Gaussian filter 

    sigma = 0.1 

    gaussian_filter = cv2.getGaussianKernel(ksize=5, sigma=sigma) 

    # Apply Gaussian Filter to the image 

    I = signal.convolve2d(I, gaussian_filter, mode='same', boundary="symm") 

    # adding the boundary argument with the value 'symm'. This will make the 

convolution use 'symmetric' padding 

    dx = signal.convolve2d(I, np.array([[-1, 0, 1]]), mode='same', 

boundary="symm") 

    dy = signal.convolve2d(I, np.array([[-1, 0, 1]]).T, mode='same', 

boundary="symm") 

 

    mag = np.sqrt(dx ** 2 + dy ** 2)  

    mag = mag / np.max(mag) 

    mag = mag * 255. 

    mag = np.clip(mag, 0, 255) 

    mag = mag.astype(np.uint8) 

    return mag 

Figure 3.2 Add Gaussian filters 



We choose Sigma equals 0.1, 1, and 10 to observe the difference. Figure 3.3 shows 

the different images under different sigma.  

 

(a) sig=0.1, 3096.png         (b) sig=1, 3096.png         (c) sig=10, 3096.png 

 

(d) sig=0.1, 42049.png         (e) sig=1, 42049.png         (f) sig=10, 42049.png 

 

(g) sig=0.1, 21077.png         (h) sig=1, 21077.png         (i) sig=10, 21077.png 

Figure 3.3 Difference when choosing different Sigma. First-row sigma = 0.1, 

second-row sigma = 1, third-row sigma = 10 

Below Table 3.3 shows the Contour quality performance metrics before and after 

the modification. 

Table 3.3 Metrics before and after the modification 

 before 
After 

Sig = 0.1 

After 

Sig = 1 

After 

Sig = 10 

f1 (overall max F-score) 0.542282 0.542282 0.562923 0.556896 

best_f1 (average max F-score) 0.587146 0.587146 0.605533 0.600449 



area_pr (AP) 0.509025 0.509025 0.550483 0.532105 

 

Below Table 3.4 shows the impact of modification on run-time. 

Table 3.4 Run-time before and after the modification 

 before 
after 

Sig = 0.1 

After 

Sig = 1 

After 

Sig = 10 

run-time(s) 159.6061 158.9195 154.3474 149.0969 

 

With the increase of sigma, the run-time decrease. But it doesn’t seem to be 

decreasing significantly.  

According to the view on the images and F-scores and AP values, it seems that 

when sigma equals to 1 can gain a better outcome.  

 

• Non-maximum Suppression. The current code does not produce thin 

edges. Implement non- maximum suppression, where we look at the 

gradient magnitude at the two neighbours in the direction perpendicular 

to the edge. We suppress the output at the current pixel if the output at 

the current pixel is not more than at the neighbors. You will have to 

compute the orientation of the contour (using the X and Y gradients), and 

implement interpolation to lookup values at the neighbouring pixels. (6 

marks) In the code, you may need to define your own edge detector with 

non-maximum suppression. Note that all the functions are called in 

‘detect edges()’.   

We must first use the X and Y gradients (we have calculated before) to compute 

the orientation of the contour in order to implement non-maximum suppression. 

Then, we need to interpolate values at the neighbouring pixels to compute the 

gradient magnitude at the two neighbours in the direction perpendicular to the 

edge. Finally, if the output at the current pixel is not more than that at the 

neighbours, we can suppress the output there. 

We write a method called non_maximum_suppress(dx, dy, mag) to perform non-

maximum suppression as shown in Figure 3.4.  



def non_maximum_suppress(dx, dy, mag): 

    angle = np.arctan2(dy, dx) * 180 / np.pi 

    angle[angle < -90] += 180 

    angle[angle > 90] -= 180 

 

    for i in range(1, mag.shape[0] - 1): 

        for j in range(1, mag.shape[1] - 1): 

            a = angle[i, j] 

            if -22.5 <= a <= 22.5 or a <= -157.5 or a >= 157.5: 

                p1, p2 = mag[i, j - 1], mag[i, j + 1] 

            elif -67.5 <= a < -22.5: 

                p1, p2 = mag[i - 1, j - 1], mag[i + 1, j + 1] 

            elif -112.5 <= a < -67.5: 

                p1, p2 = mag[i - 1, j], mag[i + 1, j] 

            else: 

                p1, p2 = mag[i + 1, j - 1], mag[i - 1, j + 1] 

 

            if mag[i, j] <= p1 or mag[i, j] <= p2: 

                mag[i, j] = 0 

    return mag 

Figure 3.4 Non-maximum suppression function 

We perform non-maximum suppression function based on adding Gaussian filter 

with sigma equaling 1. Figure 3.5 will show before and after performing non-

maximum suppression.  

 

(a) Before 3096.png                                 (b) After 3096.png 



 

(c) Before 42049.png                          (d) After 42049.png 

  

(e) Before 21077.png                            (f) After 21077.png 

Figure 3.5 Difference before and after performing non-maximum suppression. Left 

column is before using non-maximum suppression function. Right column is after 

using non-maximum suppression function 

Below Table 3.5 shows the Contour quality performance metrics before and after 

the modification. 

Table 3.5 Metrics before and after the modification 

 before After 

f1 (overall max F-score) 0.562923 0.564573 

best_f1 (average max F-score) 0.605533 0.586527 

area_pr (AP) 0.550483 0.561575 

 

Below Table 3.6 shows the impact of modification on run-time. 



Table 3.6 Run-time before and after the modification 

 before After 

run-time(s) 154.3474 97.5503 

 

Run-time decreases significantly. The possible reason for this is that non-

maximum suppression helps eliminate duplicate or overlapping detections by 

selecting the most confident or representative detection among them. By discarding 

redundant detections, the subsequent processing steps can be performed on a 

reduced set of data, resulting in fewer computations and faster runtime. 

 

• Extra Credit. You should implement other modifications to get this 

contour detector to work even better. Here are some suggestions: 

compute edges at multiple different scales, use color information, 

propagate strength along a contiguous contour, etc. You are welcome to 

read and implement ideas from papers on this topic. (upto 5 marks)  

We combine colour information with grayscale edge detection to enhance contour 

detection. Converting the image to a colour space like CIELAB that separates the 

colour and intensity components is one approach to accomplish this. Figure 3.6 

shows how to use colour information.  

def compute_colour_edges(I): 

    # Convert image to CIELAB color space 

    lab = cv2.cvtColor(I, cv2.COLOR_BGR2LAB) 

 

    # Split into L, A, and B components 

    L, A, B = cv2.split(lab) 

 

    # Compute edges for each channel 

    edge_L = compute_edges_dxdy(L) 

    edge_A = compute_edges_dxdy(A) 

    edge_B = compute_edges_dxdy(B) 

 

    # Combine edges into a single image 

    colour_edges = np.max((edge_L, edge_A, edge_B), axis=0) 

 

    return colour_edges 

Figure 3.6 Code for converting image to CIELAB color space 

Since contours typically take the form of continuous curves, we may use this 

knowledge to increase the precision with which contours are detected. The edge 

strengths can be transmitted along the contour path using a contour propagation 



technique. This can aid in improving the first edge detection findings and 

producing contours that are smoother and more precise. The contour strength 

propagation factor should be added to non_maximum_suppress() function. After 

Changing, the function non_maximum_suppress() is shown in Figure 3.7.  

def non_maximum_suppress(dx, dy, mag): 

    propagate_factor = 0.5 

 

    angle = np.arctan2(dy, dx) * 180 / np.pi 

    angle[angle < -90] += 180 

    angle[angle > 90] -= 180 

 

    # implement the contour strength propagation 

    propagated = np.zeros_like(mag) 

 

    for i in range(1, mag.shape[0] - 1): 

        for j in range(1, mag.shape[1] - 1): 

            a = angle[i, j] 

            if -22.5 <= a <= 22.5 or a <= -157.5 or a >= 157.5: 

                p1, p2 = mag[i, j - 1], mag[i, j + 1] 

            elif -67.5 <= a < -22.5: 

                p1, p2 = mag[i - 1, j - 1], mag[i + 1, j + 1] 

            elif -112.5 <= a < -67.5: 

                p1, p2 = mag[i - 1, j], mag[i + 1, j] 

            else: 

                p1, p2 = mag[i + 1, j - 1], mag[i - 1, j + 1] 

 

            if mag[i, j] <= p1 or mag[i, j] <= p2: 

                propagated[i, j] = mag[i, j] * propagate_factor 

            else: 

                propagated[i, j] = mag[i, j] 

 

    return propagated 

Figure 3.7 Revised non_maximum_suppress() function 

  

(a) Before 3096.png                                 (b) After 3096.png 



  

(c) Before 42049.png                          (d) After 42049.png 

  

(e) Before 21077.png                            (f) After 21077.png 

Figure 3.8 Difference before and after modifications. Left column is before 

modifications. Right column is after modifications 

Below Table 3.7 shows the Contour quality performance metrics before and after 

the modification. 

Table 3.7 Metrics before and after the modification 

 before After 

f1 (overall max F-score) 0.564573 0.598626 

best_f1 (average max F-score) 0.586527 0.630397 

area_pr (AP) 0.561575 0.581905 

 

Below Table 3.8 shows the impact of modification on run-time. 

Table 3.8 Run-time before and after the modification 



 before After 

run-time(s) 97.5503 194.9693 

 

After all, there is a slight improvement in accuracy and we can visually observe 

more details in our edge. But the run-time increase nearly twice.  


